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Abstract: To define salient rhetorical elements in scholarly text, we have earlier defined 
a set of Discourse Segment Types: semantically defined spans of discourse at the level 
of a clause with a single rhetorical purpose, such as Hypothesis, Method or Result. In this 
paper, we use machine learning methods to predict these Discourse Segment Types in a 
corpus of biomedical research papers. The initial experiment used features related to verb 
type and form, obtaining F-scores ranging from 0.41-0.65. To improve our results, we 
explored a variety of methods for balancing classes, before applying classification 
algorithms. We also performed an ablation study and stepwise approach for feature 
selection. Through these feature selection processes, we were able to reduce our 37 
features to the 7 most informative ones, while maintaining F1 scores in the range of 0.63-
0.65. Next, we performed an experiment with a reduced set of target classes. Using only 
verb tense features, logistic regression, a decision tree classifier and a random forest 
classifier, we predicted that a segment type was either a Result/Method or a 
Fact/Implication, with F1 scores above 0.8. Interestingly, findings from this machine 
learning approach are in line with a reader experiment, which found a correlation between 
verb tense and a biomedical reader’s interpretation of discourse segment type. This 
suggests that experimental and concept-centric discourse in biology texts can be 
distinguished by humans or machines, using verb tense as a key feature. 
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1.   Introduction 

To make sense of the overwhelming flood of scientific literature, a wealth of research has 
been done to support the development of online reasoning systems by analysing linear 
scholarly narratives and identifying salient components (see e.g. [1] for an overview of 
related work). As a first step in this analysis, the text needs to be parsed to identify the level 
of textual granularity that most closely defines what a ‘salient component’ is. Various 
different schemes for annotating discourse elements in scientific texts have been proposed 
(see e.g. [8] for an overview of other models of analysis).  
 To motivate our own choice of granularity, see sentences (1) – (3), taken from 
Voorhoeve et al. (2006): 

(1) [An] escape from oncogene-induced senescence is a prerequisite for full 
transformation into tumor cells. (FACT) 
(2) a.  To identify miRNAs that can interfere with this process (GOAL) 
     b.  and thus might contribute to the development of tumor cells, 
(HYPOTHESIS) 
     c.  we transduced BJ/ET fibroblasts with miR-Lib (METHOD) 
     d.  and subsequently transduced them with either RASV12 or a control vector   
(Figure 2B).  (METHOD) 
(3) After 2 or 3 weeks in culture, senescence-induced differences in abundance of 
all miR-Vecs were determined with the miR-Array.  (RESULT) 

 Clearly, several distinct meanings are stated within these three single sentences: for 
example, in (2), the goal of the (sub)-experiment is first stated, followed by a hypothesis. 
After the comma, this is followed by a description of methods used. Given these definitions, 
it is clear that sentences are not the right level of granularity to qualify as Discourse 
Segments. Given this, we decided to identify Discourse Segments at approximately the level 
of a clause (i.e. a coherent sentence fragment containing a single verb).  Next, we defined a 
small taxonomy of semantic (or pragmatic) segment types, with which to classify these 
Discourse Segments (see Table 1 for a definition of these types, taken from [3]). For further 
details on our segmentation and motivation for these Discourse Segment Types or DSTs, 
see [3].  

 

 

 



Table 1: Discourse Segment Type Classification (DST) 

Discourse Segment 
Type 

Definition Example 

Goal Research goal To examine the role of endogenous 
TGF-β signaling in restraining cell 
transformation, 

Fact A known fact, a statement 
taken to be true by the author. 

Sustained proliferation of cells in the 
presence of oncogenic signals is a major 
leap toward tumorigenicity. 

Result The outcome of an experiment Two largely overlapping constructs 
encoded both miRNA-371 and 372 (miR-
Vec-371&2). 

Hypothesis A claim proposed by the 
author 

These miRNAs could act on a factor 
upstream of p53 as a cellular 
suppressor to oncogenic RAS. 

Method Experimental method We examined p53 mutations in exons 
five to eight in the primary tumors. 

Problem An unresolved or contradictory 
issue 

The mechanism underlying this effect 
and its conservation to other tissues is 
not known. 

Implication An interpretation of the results [This indicates that] miR-372/3 acts as 
a molecular switch. 

  
In earlier work, we identified three types of lexicogrammatical features that identify the 
various ‘discourse realms’ which these segments occupy, in particular: is the Discourse 
Segment related to experimental text (as in the case of Goals, Methods and Results), or 
conceptual text (as in the case of Hypotheses, Problems, Implications and Facts)  (see [5] 
for a further definition of these ideas). The features we explored were  

i. verb tense and form: Tense (i.e., Past/Present/Future tense), Verb Form 
(Perfective, Progressive, or unmarked) for each tense, and two nonfinite verb 
forms (To-infinitive or Gerund or ‘-ing’ form) [5];  

ii. a taxonomy of semantic verb classes [6], and  
iii. a series of modality markers [11]. 

 
Our previous research established that there was a clear correlation between, in particular, 
verb tense and form and discourse realm. In particular, Methods and Results were correlated 
with Past Tense, Hypotheses with Modal Auxiliary Verbs, and Goals with To-Infinitives. 
We found both a correlation in our corpus study, as well as in a reader experiment: changing 
the verb tense changed the reader’s interpretation of the discourse segment [3]. 



 We saw that this work could be applied, for instance, to identify salient segment types, 
such as Implications, from large corpora of text: this means there might be applications 
from this work to support, for instance, automated summarization efforts. A first effort to 
scale up the identification of DSTs with text processing tools was done quite early on, with 
some promising results [4], but this was done at scale. In later work, we developed a 
classifier for these seven DSTs, and trained this on sentences in the Results sections of 
biology papers, achieving an overall F-score of 0.63 [1]. We wanted to improve on this 
score and enable large-scale text processing and identification of DSTs. In particular, we 
were interested to know if the verb features that were so significant for the reader studies 
could be used to identify discourse segments and help build tools that identify key 
conclusions or experimental segments from papers.   
 In this study, we present an exhaustive approach to automatically identifying discourse 
segment types using supervised machine learning methods. We work on the full text of a 
manually curated set of biomedical research papers, using a set of features derived from the 
corpus studies. The novelty of our approach rests in the fact that this dataset presents a 
typical challenge in employing classification algorithms, due to the severe class imbalance 
of our predicted classes.  To improve model fitting and accuracy, we therefore first balanced 
the classes before subjecting them to classifiers, using several different under- and over-
sampling methods [9]. This resulted in a set of 36 models that all used a different 
combination of class balancers and classification algorithms to predict segment discourse 
type.  Next, we culled these models to select only those that include the most important 
features and produce the highest accuracy and F1 scores.  

2.   Methods and Results 

In exploring this data, we first ran some pre-processing and filtering on our dataset and 
tackled some preliminary feature selection. We then ran 3 baseline classification algorithms 
on this preprocessed data, before proceeding with 4 experiments. Experiment 1 was a test 
of Class Balancing tools, experiments 2 and 3 were ablation studies to further limit our 
features, and experiment 4 was a separate and simplified classification problem prompted 
by our findings in the initial 3 experiments. In the methods and results section here, we walk 
through each of these experiments and the results. A summary of all 4 experiments is 
presented in Figure 1 at the end of the section. 
 
 
 
 



2.1  Dataset curation 
 
The dataset was based on a set of 10 papers in cell biology and electrophysiology, which 
was manually split into discourse segments and marked up with Discourse Segment Types 
described above, and in [3]. The full, manually curated dataset can be found on Mendeley 
Data at https://data.mendeley.com/datasets/4bh33fdx4v/3 [2].  
 The corpus started as a set of 3,239 Type-identified Discourse Segments, which were 
loaded into a Jupyter notebook. (See Suplementary Material, below.)  Our predicted class 
is “Discourse Segment Type”, as outlined in Table 1.  Data points with the segment type 
“blank” (316), “header” (134), or “null” (1) were eliminated from the dataset, as were 
entries containing an empty verb type or verb form field (8). The missing data points were 
most likely due to an inability of the curators to identify the target class or feature. We 
determined Header to not be a useful discourse segment type for prediction in this case.  
We also eliminated those that were labeled “Intratextual” or “Intertextual” (taken from our 
earlier taxonomy, but not included in the current set of DST’s, as their classes were 
particularly small relative to the size of the dataset, (71 and 14, respectively)). Our final 
dataset contained 2,695 points. 
 
2.2  Feature Selection 
 
We created a set of 32 features. These features were based on the three earlier linguistic 
explorations and can be grouped in three distinct classes: Verb form/tense, Verb Class, and 
Modality markers. Next to these, we created a new feature that reflects whether the verb 
used in the segment was in the top 10 most frequently used verbs:  “show”, “indicate”, 
“demonstrate”, “suggest”, “use”, “identify”, “reduce”, “suppress”, “express”, and 
“examine”, as well as a separate feature, ‘Show”. All of our categorical features were 
converted to dummy variables so that they could be appropriately included within the 
model. These are described in Appendix 5.1.   

2.3  Model Construction 

Given that many of the predicted classes are severely unbalanced, as shown in Table 3, we 
began by employing a variety of methods to account for these differences, by either under-
sampling the majority class or over-sampling the minority classes.  These methods were 
imported from the scikit-learn imblearn library [9].  We used 6 under-samplers, 4 over-
samplers and 2 that used a combination of under- and over-sampling. The list and brief 
description of the 12 class balancers used are described in Appendix 5.2.   



Table 3.  Number of segments per DST 

Segment Type Number 
Result 851 
Implication 657 
Method 351 
Hypothesis 315 
Fact 262 
Goal 149 
Problem 110 

 
The data was split into a test and training set, using a test size equivalent to 30% of the total 
data.  It was first fed through one of the 12 class balancers, and then to one of three 
classifiers (experiment 1) : logistic regression (LR), decision tree classifier (DTC) or 
random forest classifier (RFC).  Logistic regression was performed using an LBFGS solver 
to handle multinomial loss.  In addition to our experiment with class balancers, we also ran 
a baseline set of all 3 classifiers with no Class Balancer included. The accuracy, precision, 
recall and F1 scores were generated for each of these models and then compared, shown in 
Appendix 5.3.  

The results in Appendix 3 show models ran with TomekLinks, SMOTE, SMOTEborderline, 
SMOTEborderline2 and SMOTETomek to have the highest performance.  Highest accuracy 
was achieved by a decision tree and random forest classifier, using TomekLinks, with a 
score of 0.64.  Highest precision was scattered across a few class balancers that used logistic 
regression with a score of 0.68.  The highest recall score was 0.64, achieved by decision 
tree and random forest with TomekLinks.  The highest F1 score was 0.65, also scattered 
across models that used a few class balancers and logistic regression. 
  Because these scores showed no improvement over our baseline model, we next sought 
to reduce model complexity and identify the most significant features.  An ablation study 
(experiment 2) was performed using a random forest classifier.  We looped through the 
model, and on each iteration removed the least informative feature in the dataset. During 
this process, our F1 Score stayed between .62-.64 until we’d removed more than half of our 
features. We ranked the features based on their significance to the model and then trimmed 
the features to the 9 most significant (Past', 'Present', 'To-infinitive', 'Interpretation', 
'Investigation', 'Procedure', 'Modal', 'Verb_Class_Interpretaion', 
'Ruled_by_VC_Interpretation').  These features were determined to be most significant by 
buidling a feature ranking list for each model, dropping the least significant , and stopping 
when we’d reched a significant drop in F1 score. 



 We then reran these features through a smaller set of class balancers, (TomekLinks, 
SMOTE, SMOTEborderline, SMOTEborderline2, SMOTETomek) followed by logistic 
regression, decision tree or random forest, reported in Table 5.  These class balancers were 
chosen because they produced models with the highest overall metrics in the outcomes of 
experiment 1.  We did not observe a vast improvement in performance in these models 
compared to those containing all of the features outlined in Appendix 5.3. However it is 
worth noting that we did not experience a drop-off in results either. This indicates that the 
majority of predictive power is coming a smaller number of features. In fact, if you look at 
the feature importance on this 9 feature model, nearly 45% of the descriptive confidence is 
coming from the first two features alone, past vs present tense verb. 

Table 5. Ablation study model performance metrics 

Classifier Class balancer Accuracy Precision Recall F1 
LR TomekLinks 0.64 0.67 0.64 0.65 
DTC TomekLinks 0.65 0.66 0.65 0.64 
RFC TomeLinks 0.65 0.66 0.65 0.64 
LR SMOTE 0.64 0.67 0.64 0.65 
DTC SMOTE 0.63 0.66 0.63 0.64 
RFC SMOTE 0.63 0.66 0.63 0.63 
LR SMOTEborderline 0.60 0.66 0.60 0.62 
DTC SMOTEborderline 0.57 0.65 0.57 0.59 
RFC SMOTEborderline 0.57 0.65 0.57 0.59 
LR SMOTEborderline2 0.61 0.66 0.61 0.62 
DTC SMOTEborderline2 0.63 0.66 0.63 0.64 
RFC SMOTEborderline2 0.63 0.66 0.63 0.63 
LR SMOTETomek 0.64 0.67 0.64 0.65 
DTC SMOTETomek 0.63 0.66 0.63 0.64 
RFC SMOTETomek 0.63 0.65 0.63 0.64 

 We then tried a third experiment, using another manual approach to feature reduction, in 
which we used forward feature selection, incorporating each feature in turn into a random 
forest model, and comparing metrics (experiment 3).  This resulted in 13 features to be 
included ('Past', 'Procedure', 'To-infinitive', 'Modal', 'Properties', 'Investigation', 'Future', 
'show_verb', 'Observation', 'Verb_Class_Interpretaion', 'Interpretation', 
'Ruled_by_VC_Interpretation', and 'Past Progressive').  Of note, this list has a fairly 



consistent overlap with the features appeared in our initial ablation study.  Again, we reran 
these features through the same smaller set of class balancers and then through logistic 
regression, decision tree and random forest classifier.  Metrics are reported in Table 6. 

Table 6. Forward selection study model performance metrics 

Classifier Class balancer Accuracy Precision Recall F1 
LR TomekLinks 0.65 0.68 0.65 0.65 
DTC TomekLinks 0.66 0.68 0.66 0.66 
RFC TomekLinks 0.66 0.68 0.66 0.66 
LR SMOTE 0.65 0.68 0.65 0.65 
DTC SMOTE 0.62 0.69 0.62 0.64 
RFC SMOTE 0.62 0.69 0.62 0.64 
LR SMOTEborderline 0.57 0.65 0.57 0.59 
DTC SMOTEborderline 0.57 0.64 0.57 0.59 
RFC SMOTEborderline 0.57 0.64 0.57 0.59 
LR SMOTEborderline2 0.56 0.65 0.56 0.56 
DTC SMOTEborderline2 0.65 0.67 0.65 0.65 
RFC SMOTEborderline2 0.65 0.67 0.65 0.65 
LR SMOTETomek 0.65 0.68 0.65 0.65 
DTC SMOTETomek 0.62 0.69 0.62 0.64 
RFC SMOTETomek 0.62 0.69 0.62 0.64 

Again, we did not observe a vast improvement in performance in this subset of features.  
However, these scores do mirror and slightly improve those presented in Tables 4 and 5, 
reinforcing the significance of these specific features.  A confusion matrix was generated 
for each model presented in these tables.  This provides a more nuanced view of the 
breakdown of class prediction.  These matrices are available in our supplemental dataset in 
Mendeley: http://dx.doi.org/10.17632/tds3k5kyvg.1. 

2.4  Verb tense experiment 

Due to concerns regarding dataset size and predicted class distribution, we designed a fourth 
experiment that diverged from the others in two ways.  First, we subsampled from the larger 
dataset, specifically data labeled with a segment type of “Result”, “Method”, “Fact” or 
“Implication”.  The second difference is that we limited our feature set to verb tense features 



(“Future”, “Gerund”, “Past”, “Past participle”, “Past perfect”, “Past progressive”, 
“Present”, “Present perfect”, “Present progressive”, “To-infinitive”).  In earlier manual 
corpus work [5] we established that Present was the predominant tense for Fact and 
Implication statements, and Method and Result were predominantly described with a Past 
tense. We interpreted these results from a cognitive linguistics standpoint as tense markings 
being specific for a specific ‘discourse realm’, where experimental segments (such as 
Method and Result) are predominantly described in a (narrative) past, which lies within the 
author’s personal experience, whereas factual or conceptual statements are presented in the 
‘gnomic’, eternal Present, also used to describe faculties of statements of fact in other forms 
of discourse, such as mythological text. 
 For this experiment, we ended up with a “Result/Method” class with 1205 data points, 
and “Fact/Implication” class with 922 data points.  Because these classes are more balanced, 
we did not need to first subject them to a class balancer.  We again ran the data through 
three classifiers: logistic regression, decision tree and random forest, shown in Table 7.  
Tables 8-10 present the confusion matrices generated for each of the three models 
represented in Table 7.  The results presented in Tables 6-9 show that these models perform 
remarkably similarly and all achieved an F1 score of 0.80-0.81.   
  
Table 7:  Performance metrics of 3 models to evaluate segment type based on verb tense. 

Classifier Accuracy Precision Recall F1 score 
Logistic Regression 0.80 0.81 0.80 0.80 
Decision Tree Classifier 0.81 0.82 0.81 0.81 
Random Forest 0.81 0.82 0.81 0.81 

  
Table 8. Logistic regression model confusion matrix 

True label Result/Method 238 37 
  Fact/Implication 91 271 
    Result/Method Fact/Implication 
    Predicted label   

 
Table 9.  Decision tree classifier model confusion matrix 

True label Result/Method 238 37 
  Fact/Implication 86 276 
    Result/Method Fact/Implication 
  Predicted label   



 
Table 10.  Random forest classifier model confusion matrix 

True label Result/Method 236 39 
  Fact/impliImplication

cation 
84 278 

    Result/Method Fact/Implication 
    Predicted label   

 

 
Fig. 1. A figure describing the 4 separate experiments undertaken for this research 

3. Discussion 

The current work presents a methodical machine learning approach to classifying segment 
discourse type, using verb tense features of the segment. We approached this problem using 
a variety of machine learning methods. The first challenge we encountered was the severe 
class imbalance amongst the predicted segment types.  The Result and Implication classes 
both had greater than 650 data points each, while the five remaining classes had less than 
351 each.  The smallest class, Problem, only had 110.  While this is reflective of the 
breakdown of segment discourse within a biomedical research paper, it makes for an 
obstacle when using machine learning algorithms that rely on relatively balanced classes. 



 We turned to the imblearn package in scikit-learn [9] to aid in balancing the classes 
before running our classifiers.  This package provides a suite of sampling methods that can 
be used to either over-sample the minority class by synthetically generating these data 
points, or under-sample the majority class by throwing some points out.  If the classes 
remained unbalanced, we would observe bias towards the majority classes.  To avoid this, 
we decided to try a combination of all of these methods in conjunction with our classifiers 
and to evaluate the differences between them.  This approach is similar to what [7] used in 
their paper, where they compared performance metrics of different combinations of 
sampling methods and classifiers on two different datasets. 
 In our first experiment, we observed that models that performed more poorly than our 
baseline all used the same balance method, and there didn’t appear to be large differences 
in what classifier was used. While the remaining balancers didn’t seem to have a huge 
impact on results. Specifically, these poorly performing balancers appeared to boost 
precision over recall.  For example, we observed use of ClusterCentroids in conjunction 
with the three classifiers produced accuracy and F1 scores of 0.35-0.55, while the precision 
scores were all above 0.55.  ClusterCentroids is an undersampling method that replaces a 
cluster of samples with its cluster centroid, as calculated by the KMeans algorithm.  Because 
the majority class is being replaced with its cluster centroid, it is unsurprising that we 
observe higher precision than recall.  This illustrated the need for refining our feature 
selection, which we approached with two different experiments.  Additionally, we used the 
metrics from the first experiment to limit or sampling methods to SMOTE, TomekLinks, 
SMOTEborderline and SMOTETomek. 
 SMOTE (synthetic minority over-sampling technique) generates synthetic data points 
for the minority classes.  Given how small the dataset is in general (~2600) it is unsurprising 
that this technique yielded the best results by increasing the numbers within our dataset.  
SMOTEborderline specifically oversamples those on the border of the majority and 
minority classes.   TomekLinks is an under-sampling method that removes data points that 
are near the border of the majority and minority classes.  This allows for cleaning of the 
data in such a way that noise is reduced and the training set is improved.   SMOTETomek 
is a combination of performing SMOTE on the minority class and TomkeLinks on the 
majority class.   
 After identifying the top performing models in Table 4, we designed two additional 
experiments to refine our feature selection and reduce model complexity.  Our ablation 
study identified 9 significant features: ‘Past', 'Present', 'To-infinitive', 'Interpretation', 
'Investigation', 'Procedure', 'Modality Markers', 'Verb_Class_Interpretation', 
'Ruled_by_VC_Interpretation'.  Our forward selection experiment identified 13 significant 
features:  'Past', 'Procedure', 'To-infinitive', 'Modal', 'Properties', 'Investigation', 'Future', 



'show_verb', 'Observation', 'Verb_Class_Interpretaion', 'Interpretation', 
'Ruled_by_VC_Interpretation', and 'Past Progressive'. 
 We did not observe a remarkable improvement in model performance, largely due to the 
limitation of our sample size, though our overall F1 Scores seemed to improve slightly from 
an average of 63-64 to an average of 65-66. Some of the class sizes in our test set classes 
had less than 50 data points.  
 Interestingly, these experimental results suggest that indeed, verb class and verb form 
are key markers for Discourse Segment Type: Past, Present, Modal and To-infinitive are 
important markers for identifying the realm of the Discourse, as found in the reader study 
described above. Of the Verb Classes, again, these were predominant markers, and therefore 
match reader experiments [3]. This implies in any event that verb tense should not be 
discarded or ignored in text mining experiments, as is often done. 
 Given the small sample size and average model results, we took on a second approach 
in which we subsetted the data.  We grouped together the Result and Method classes and 
the Fact and Implication classes and dropped all other points to explore correlations between 
the two most frequent experimental Discourse Segment types and the two predominant 
conceptual Discourse Segment Types, and limited our features to those that were related to 
verb tense.  Table 7 lists the performance metrics of the three models, in which the scores 
were very similar to one another, and significantly higher than what we observed in the first 
few experiments.  This was in line with our expectations, given the tighter classes and the 
selected features. The confusion matrices also illustrate how the classes are predicted in our 
test set, and all three models tend to classify them the same.   
 In earlier discourse work, we investigated whether these tense correlations were 
perceived to be defining of discourse realm for a reader. In [3] we conducted a reader 
experiment, where 21 subjects with a biology background were asked to identify Discourse 
Segment Type for a set of segments which presented either in unmodified form, of with a 
modified tense. We found that significantly, verb tense was strongly correlated with 
segment type, especially for Implications and Results. This bears a striking similarity with 
the machine learning results found in this study.  
 We are exploring a number of future directions for this research. One line of research is 
to experiment with other corpora, e.g. in other domains, or other document types. Our data 
set is hand-coded and it remains to be seen how these results apply to unknown data. The 
challenge here is getting labels of discourse type assigned to test data. The features 
themselves likely don’t need to be hand-curated and can be generated with standard natural 
language processing (NLP) techniques. However, labeling segment types correctly requires 
more work. Initial explorations look fruitful, and we are exploring the use of  “Snorkel” 
[10] to produce noise aware generative models to help bootstrap additional training data in 



other domains. Additional future work involves applying the segment types on the sentences 
of citations to other papers. In combination with graph and network analysis and other term 
frequency analysis, this would support the classification of reason and type of citation. 
 In summary, our main objective was to predict segment discourse types based on 
lexicogrammatical features, and in doing so, we have found a good correlation with corpus 
studies.  In the process of doing this, we contribute to the development of methods used to 
examine an unbalanced dataset in linguistic discourse analysis.  Future work includes 
applying our models on additional datasets and combining with other research, such as 
citing sentence and citation graph analyses. 

4. Supplemental material 

Full manually curated dataset can be found here: de Waard, Anita (2017), “Discourse 
Segment Type vs. Linguistic Features”, Mendeley Data, v3 
http://dx.doi.org/10.17632/4bh33fdx4v.3  
 Jupyter notebooks containing steps to reproduce, analyze and view output are available 
here:  Cox, Jessica (2017), “Optimised Machine Learning Methods Predict Discourse 
Segment Type in Biological Research Articles”, Mendeley Data 
http://dx.doi.org/10.17632/tds3k5kyvg.1  

5.  Appendices 

Appendix 5.1.  Starting feature list and descriptions 

Feature Class Feature  Included in Experiment # 
Frequently Used Verb Top 10 Verb 1 
Frequently Used Verb ‘Show’ Verb 1, 3 
Verb Tense Future 1, 3, 4 
Verb Tense Gerund 1, 4 
Verb Tense Past 1, 2, 3, 4 
Verb Tense Past participle 1, 4 
Verb Tense Past perfect 1, 4 
Verb Tense Past progressive 1, 3, 4 
Verb Tense Present 1, 2, 4 
Verb Tense Present perfect 1, 4 
Verb Tense Present progressive 1, 4 
Verb Tense To-infinitive 1, 2, 3, 4 
Verb Class Cause and effect 1 
Verb Class Change and growth 1 
Verb Class Discourse verb 1 



Verb Class Interpretation 1, 2, 3 
Verb Class Investigation 1, 2, 3 
Verb Class None 1 
Verb Class Observation 1, 3 
Verb Class Prediction 1 
Verb Class Procedure 1, 2, 3 
Verb Class Properties 1, 3 
Modality Marker Modal 1, 2, 3 
Modality Marker Verb class interpretation 1, 2, 3 
Modality Marker Ruled by verb class 

interpretation 
1, 2, 3 

Modality Marker Reference internal 1 
Modality Marker Reference external 1 
Modality Marker First person 1 
Modality Marker Modal significant_ly 1 
Modality Marker Possible_ility_ly 1 
Modality Marker Potential_ly 1 
Modality Marker UN_Likely 1 
Modality Marker Sum_Adverbs_YesNO 1 

Appendix 5.2.  Description of sampling methods used. 

Sampling Method Description Method 

RandomUnderSampler Undersamples the majority classes by 
randomly picking samples 

Undersampler 

Tomeklinks Undersamples the majority classes by 
removing Tomek’s links 

Undersampler 

ClusterCentroids Under samples the majority classes by 
replacing a cluster of the majority samples by 
the cluster centroid of a KMeans algorithm 

Undersampler 

CondensedNearestNeighbor Under samples the majority classes using the 
condensed nearest neighbor method 

Undersampler 

OneSidedSelection Uses one-sided selection method on majority 
classes 

Undersampler 

InstanceHardnessThreshold Samples with lower probabilities are 
removed from the majority class 

Undersampler 

RandomOverSampler Randomly generates new samples from the 
minority classes 

Oversampler 

SMOTE Synthetic  Minority Oversampling 
Technique; generates new samples of 
minority class by interpolation 

Oversampler 

SMOTEborderline Generates new samples of minority class 
specific to the borders between two classes. 

Oversampler 



SMOTEborderline2 Generates new samples of minority class 
specific to the borders between two classes. 

Oversampler 

SMOTETomek Combines use of SMOTE on minority class 
and Tomek Links on majority class 

Over and 
undersampler 

SMOTEENN Combines use of SMOTE on minority class 
and Edited Nearest Neighbors on majority 
class 

Over and 
undersampler 

Appendix 5.3. Accuracy, precision, recall and F1 scores of all 36 models tested. 

Classifier Class Balancer Accuracy Precision Recall F1 
LR No Class Balancer 0.62 0.68 0.63 0.64 
DTC No Class Balancer 0.64 0.64 0.64 0.64 
RFC No Class Balancer 0.64 0.65 0.65 0.64 
LR RandomUnderSampler 0.58 0.64 0.58 0.59 
DTC RandomUnderSampler 0.55 0.64 0.55 0.56 
RFC RandomUnderSampler 0.57 0.63 0.56 0.57 
LR Tomeklinks 0.63 0.68 0.63 0.64 
DTC Tomeklinks 0.64 0.64 0.64 0.64 
RFC Tomeklinks 0.64 0.64 0.64 0.64 
LR ClusterCentroids 0.55 0.64 0.55 0.55 
DTC ClusterCentroids 0.35 0.48 0.35 0.32 
RFC ClusterCentroids 0.38 0.47 0.38 0.35 
LR CondensedNearestNeighbor 0.62 0.67 0.62 0.62 
DTC CondensedNearestNeighbor 0.53 0.59 0.53 0.53 
RFC CondensedNearestNeighbor 0.55 0.60 0.55 0.55 
LR OneSidedSelection 0.60 0.65 0.6 0.61 
DTC OneSidedSelection 0.47 0.47 0.47 0.46 
RFC OneSidedSelection 0.48 0.43 0.48 0.45 
LR InstanceHarnessThreshold 0.46 0.58 0.46 0.5 
DTC InstanceHarnessThreshold 0.37 0.61 0.37 0.41 
RFC InstanceHarnessThreshold 0.40 0.61 0.4 0.44 
LR RandomOverSampler 0.63 0.68 0.63 0.64 
DTC RandomOverSampler 0.60 0.64 0.6 0.61 
RFC RandomOverSampler 0.61 0.64 0.61 0.61 
LR SMOTE 0.63 0.68 0.63 0.64 



DTC SMOTE 0.62 0.64 0.63 0.63 
RFC SMOTE 0.63 0.64 0.63 0.63 
LR SMOTEborderline 0.63 0.68 0.63 0.65 
DTC SMOTEborderline 0.63 0.64 0.63 0.63 
RFC SMOTEborderline 0.62 0.63 0.62 0.62 
LR SMOTEborderline2 0.63 0.68 0.63 0.64 
DTC SMOTEborderline3 0.63 0.64 0.63 0.63 
RFC SMOTEborderline4 0.62 0.64 0.62 0.62 
LR SMOTETomek 0.63 0.68 0.63 0.65 
DTC SMOTETomek 0.63 0.64 0.63 0.63 
RFC SMOTETomek 0.63 0.65 0.63 0.63 
LR SMOTEENN 0.50 0.63 0.50 0.52 
DTC SMOTEENN 0.42 0.65 0.42 0.45 
RFC SMOTEENN 0.44 0.63 0.44 0.46 
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